PLS classification of functional data
نویسندگان
چکیده
Partial least squares (PLS) approach is proposed for linear discriminant analysis (LDA) when predictors are data of functional type (curves). Based on the equivalence between LDA and the multiple linear regression (binary response) and LDA and the canonical correlation analysis (more than two groups), the PLS regression on functional data is used to estimate the discriminant coefficient functions. A simulation study as well as an application to kneading data compare the PLS model results with those given by other methods.
منابع مشابه
Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملPLS dimension reduction for classification of microarray data
PLS dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, PLS is compared with some of the best state-of-the-art classification methods. In addition, a simple procedure to choose the number of components is suggested. The connection between PLS dimension reduction and gene selection is examined and a ...
متن کاملKernel logistic PLS: A tool for supervised nonlinear dimensionality reduction and binary classification
Kernel logistic PLS” (KL-PLS) is a new tool for supervised nonlinear dimensionality reduction and binary classification. The principles of KL-PLS are based on both PLS latent variables construction and learning with kernels. The KL-PLS algorithm can be seen as a supervised dimensionality reduction (complexity control step) followed by a classification based on logistic regression. The algorithm...
متن کاملPLS dimension reduction for classification with microarray data.
Partial Least Squares (PLS) dimension reduction is known to give good prediction accuracy in the context of classification with high-dimensional microarray data. In this paper, the classification procedure consisting of PLS dimension reduction and linear discriminant analysis on the new components is compared with some of the best state-of-the-art classification methods. Moreover, a boosting al...
متن کاملUsing basis expansions for estimating functional PLS regression. Applications with chemometric data
There are many chemometric applications, such as spectroscopy, where the objective is to explain a scalar response from a functional variable (the spectrum) whose observations are functions of wavelengths rather than vectors. In this paper, PLS regression is considered for estimating the linear model when the predictor is a functional random variable. Due to the infinite dimension of the space ...
متن کامل